代謝造影劑¹¹C-acetoacetate 未來之臨床應用潛能

常務監事 曾凱元

The role of Nuclear Medicine in AD

- HMPAO-SPECT scan
- FDG-PET scan
- Beta-amyloid PET scan
- Tau-protein PET scan
- Inflammation PET scan?
- ????

How early is early enough?

Connection between AD & DM (T2)

- Peripheral insulin resistance and diabetes are risk factors for Alzheimer's disease;
- Hyperinsulinemia may cause the accumulation of β -amyloid in brain;
- Insulin signaling pathway are abnormal in AD brains;

AD as type III DM – by Suzanne M. de la Monte

- Deficits in glucose uptake and utilization;
- Insulin resistance down-regulated target genes needed for cholinergic function;
- Inhibition of insulin signaling mediated neurodegeneration;
- Oxidative stress, increased cell death;
- Mitochondrial dysfunction;
- Pro-inflammation and pro-apoptosis cascades.

NEJM 2010;362:329-44

Brain glucose dysregulation in AD

- Abnormalities in brain glucose homeostasis are intrinsic to AD and may begin several years before clinical symptoms;
- Decreased enzymatic activities of hexokinase, phosphofructokinase, pyruvate kinase (inside mitochondria) at lesion sites;
- Neuronal GLUT3 are reduced and parallel severity; (astrocytic GLUT1 unchanged)
- Higher tissue glucose concentration at lesion sites;
- Increases in fasting plasma glucose levels are associated with brain tissue glucose concentrations globally.

Case report

- Male, white, 51 y/o (2001), short term memory loss;
- 56 y/o (2006), gave up job, stopped driving;
- 54-58 y/o (2004-2008) MMSE score from 23 to 12;
- 2008 MRI showed diffuse involutional changes of frontal and parietal lobes and moderate left-sided and severe right-sided atrophy of amygdala and hippocampus, consistent with AD;
- APOE ε4-positive

Coconut oil-> MCTs-> ketone

- MCTs (mid-chain triglycerides) 6 to 12 C
 - C6:o Caproic
 - C8:o Caprylic (6%) to ketones (most ketogenic)
 - C10:0 Capric (9%) to ketones
 - C12 Lauric (>50%)
- Other LCTs (saturated)
 - C18:o Stearic
 - C18:1 Oleic
 - C18:2 Linoleic

Trial courses

- 5/21/2008 starting coconut oil therapy;
- Added mid-chain triglyceride for therapy several months later;
- MMSE from 12 to 20 after 75 days therapy;
- ADAS-Cog rose 6 points, ADLs rose 14 points;
- MRI on 4/28/2010 stayed the same;
- 4/29/2010 adding keto monoester Tx;
- Improving clinically in daily activities.

The Ketone Bodies

Use of R-β-[1-¹¹C]hydroxybutyrate in PET studies of regional cerebral uptake of ketone bodies in humans

¹¹C-Acetoacetate (AcAc)-rat

¹¹C-AcAc vs. ¹⁸F-FDG young adults 26 vs. 74 y/o

- In comparison with younger adults, older adults had 8 % lower cerebral metabolic rates for glucose in gray matter as a whole.
 - The effect of age on cerebral metabolic rates for acetoacetate in gray matter did not reach significance.

¹¹C-AcAc in old vs. young adults

26 vs. 74 y/o

Glucose metabolism in AD brain

- Primary or Secondary?
 - Consequence of the cellular and functional degeneration in AD → glucose hypometabolism;
 - Glucose hypometabolism of brain is a critical part of the clinically asymptomatic early AD.
- Which fuel?
 - Hypometabolism to glucose only or energy substrates in general?
 - Hypometabolism affect glucose more than other substrates?

Lower Brain ¹⁸F-Fluorodeoxyglucose Uptake But Normal ¹¹C-Acetoacetate Metabolism in Mild Alzheimer's Disease Dementia

- Neither global nor regional CMRa differed between the two groups.
- Regional brain energy substrate hypometabolism in mild AD may be speific to impaired glucose uptake and/or utilization.
- This suggests a potential avenue for compensating brain energy deficit in AD with ketones.

Ann NY Acad Sci 2016;1367:12-20

Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease

Stephen C. Cunnane,^{1,2,3} Alexandre Courchesne-Loyer,^{1,3} Valérie St-Pierre,^{1,3} Camille Vandenberghe,^{1,3} Tyler Pierotti,^{1,4} Mélanie Fortier,¹ Etienne Croteau,¹ and Christian-Alexandre Castellano¹

- AC-1202 (Axona) as "medical food" therapy;
- "Ketogenic diet" as "real food" therapy.

¹¹C-AcAc vs. ¹⁸F-FDG vs. ketogenic diet

Plasma glucose (mmol/L) Decreased 24%

J Alzheimers Dis 2017;56(4):1459-68

- N=10, MMSE: 26/30, 73 y/o, 8 km/wk in 3 ds at 4 km/hr for 3 ms.
- Plasma acetoacetate concentration, blood-to-brain acetoacetate influx rate constant increased 2-3-fold
- Improvement in the Stroopcolor naming test, Trail making A&B tests.

unchanged

Increased 3-fold

Targeting insulin inhibition as a metabolic therapy in advanced cancer: A pilot safety and feasibility dietary trial in 10 patients

Eugene J. Fine M.D., M.S. ^{a,*}, C.J. Segal-Isaacson Ed.D., R.D. ^b, Richard D. Feinman Ph.D. ^c, Silvia Herszkopf M.S., R.D., L.M.N.T. ^d, Maria C. Romano M.S., R.D., C.D.N. ^d, Norica Tomuta M.D. ^e, Amanda F. Bontempo M.S., R.D., C.D.N. ^d, Abdissa Negassa Ph.D. ^f, Joseph A. Sparano M.D. ^g

Table 1 Baseline patient demographics

Patient	Age (y)/Race	Sex	Cancer diagnosis	Year*	Prior chemotherapy courses	Glucose (mg/dL)	Creatine (mg/dL)	Weight (kg)	BMI (kg/m ²)
1	61/AA	F	breast	4	5	107	1.3	77.6	29.3
2	53/H	F	fallopian tube	5	5	93	0.9	63.0	25.0
3	73/C	F	breast	14	0†	114	0.8	62.8	28.0
4	70/AA	F	colorectum	5	4	87	1.2	73.0	28.5
5	69/AA	M	lung	5	5	90	1.0	77.1	27.5
6	72/C	M	esophagus	2	6	107	1.0	103.4	29.3
7	52/As	F	colorectum	5	4	104	0.5	46.3	20.9
8	61/C	M	colorectum	6	6	95	1.1	69.9	22.7
9	64/AA	F	ovary	5	10	100	1.7	98.0	34.9
10	54/C	F	lung	4	8	93	0.9	68.0	26.1
Mean ± SEM	62.9 ± 2.5	N/A	N/A	5.5 ± 1.0	5.3 ± 0.8	99 ± 2.8	1.0 ± 0.1	73.0 ± 5.3	27.2 ± 1.2

^a Department of Radiology (Nuclear Medicine), Albert Einstein College of Medicine, Bronx, New York, USA

Ketosis on VLC diet vs. baseline

Stability

Progression

Pt.	PET	[BHB _{VLC}]/Baseline
3*	SD	2.7 ± 1.2
2	PR	23.3 ± 14.2
5	SD	13.1 ± 18.5
7	SD	14.6 ± 11.8
8	SD	8.2 ± 2.8
10	SD	23.6 ± 8.2
1	PD	2.1 ± 1.9
4	PD	2.8 ± 1.2
6	PD	4.2 ± 2.8
9	PD	11.4 ± 4.5

^{*} Pt. 3 had biologically much more indolent disease than

Ketosis vs. PET outcome

Ketosis is 3-fold higher among stabilizers

18F-β-hydroxybutyrate
the next metabolic PET agent?

Conclusion

- Treat Alzheimer's disease as a metabolic disorder;
- Using ¹¹C-AcAc and ¹⁸F-FDG PET scans to select suitable cases for ketone therapy in AD;
- Using ¹¹C-AcAc and ¹⁸F-FDG PET scans to select suitable cases for ketone therapy in oncology;
- Possible application of ¹¹C-AcAc in other neurological disorders;
- Develop ¹¹C-AcAc , ¹¹C- β -hydroxy butyrate and ¹⁸F- β -hydroxy butyrate as possible metabolic PET imaging agents in Taiwan.