代謝造影劑¹¹C-acetoacetate 未來之臨床應用潛能 常務監事 曾凱元 #### The role of Nuclear Medicine in AD - HMPAO-SPECT scan - FDG-PET scan - Beta-amyloid PET scan - Tau-protein PET scan - Inflammation PET scan? - ???? How early is early enough? #### Connection between AD & DM (T2) - Peripheral insulin resistance and diabetes are risk factors for Alzheimer's disease; - Hyperinsulinemia may cause the accumulation of β -amyloid in brain; - Insulin signaling pathway are abnormal in AD brains; #### AD as type III DM – by Suzanne M. de la Monte - Deficits in glucose uptake and utilization; - Insulin resistance down-regulated target genes needed for cholinergic function; - Inhibition of insulin signaling mediated neurodegeneration; - Oxidative stress, increased cell death; - Mitochondrial dysfunction; - Pro-inflammation and pro-apoptosis cascades. NEJM 2010;362:329-44 # Brain glucose dysregulation in AD - Abnormalities in brain glucose homeostasis are intrinsic to AD and may begin several years before clinical symptoms; - Decreased enzymatic activities of hexokinase, phosphofructokinase, pyruvate kinase (inside mitochondria) at lesion sites; - Neuronal GLUT3 are reduced and parallel severity; (astrocytic GLUT1 unchanged) - Higher tissue glucose concentration at lesion sites; - Increases in fasting plasma glucose levels are associated with brain tissue glucose concentrations globally. ### Case report - Male, white, 51 y/o (2001), short term memory loss; - 56 y/o (2006), gave up job, stopped driving; - 54-58 y/o (2004-2008) MMSE score from 23 to 12; - 2008 MRI showed diffuse involutional changes of frontal and parietal lobes and moderate left-sided and severe right-sided atrophy of amygdala and hippocampus, consistent with AD; - APOE ε4-positive #### Coconut oil-> MCTs-> ketone - MCTs (mid-chain triglycerides) 6 to 12 C - C6:o Caproic - C8:o Caprylic (6%) to ketones (most ketogenic) - C10:0 Capric (9%) to ketones - C12 Lauric (>50%) - Other LCTs (saturated) - C18:o Stearic - C18:1 Oleic - C18:2 Linoleic #### Trial courses - 5/21/2008 starting coconut oil therapy; - Added mid-chain triglyceride for therapy several months later; - MMSE from 12 to 20 after 75 days therapy; - ADAS-Cog rose 6 points, ADLs rose 14 points; - MRI on 4/28/2010 stayed the same; - 4/29/2010 adding keto monoester Tx; - Improving clinically in daily activities. #### The Ketone Bodies # Use of R-β-[1-¹¹C]hydroxybutyrate in PET studies of regional cerebral uptake of ketone bodies in humans #### ¹¹C-Acetoacetate (AcAc)-rat # ¹¹C-AcAc vs. ¹⁸F-FDG young adults 26 vs. 74 y/o - In comparison with younger adults, older adults had 8 % lower cerebral metabolic rates for glucose in gray matter as a whole. - The effect of age on cerebral metabolic rates for acetoacetate in gray matter did not reach significance. # ¹¹C-AcAc in old vs. young adults 26 vs. 74 y/o #### Glucose metabolism in AD brain - Primary or Secondary? - Consequence of the cellular and functional degeneration in AD → glucose hypometabolism; - Glucose hypometabolism of brain is a critical part of the clinically asymptomatic early AD. - Which fuel? - Hypometabolism to glucose only or energy substrates in general? - Hypometabolism affect glucose more than other substrates? # Lower Brain ¹⁸F-Fluorodeoxyglucose Uptake But Normal ¹¹C-Acetoacetate Metabolism in Mild Alzheimer's Disease Dementia - Neither global nor regional CMRa differed between the two groups. - Regional brain energy substrate hypometabolism in mild AD may be speific to impaired glucose uptake and/or utilization. - This suggests a potential avenue for compensating brain energy deficit in AD with ketones. ### Ann NY Acad Sci 2016;1367:12-20 # Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease Stephen C. Cunnane,^{1,2,3} Alexandre Courchesne-Loyer,^{1,3} Valérie St-Pierre,^{1,3} Camille Vandenberghe,^{1,3} Tyler Pierotti,^{1,4} Mélanie Fortier,¹ Etienne Croteau,¹ and Christian-Alexandre Castellano¹ - AC-1202 (Axona) as "medical food" therapy; - "Ketogenic diet" as "real food" therapy. # ¹¹C-AcAc vs. ¹⁸F-FDG vs. ketogenic diet Plasma glucose (mmol/L) Decreased 24% # J Alzheimers Dis 2017;56(4):1459-68 - N=10, MMSE: 26/30, 73 y/o, 8 km/wk in 3 ds at 4 km/hr for 3 ms. - Plasma acetoacetate concentration, blood-to-brain acetoacetate influx rate constant increased 2-3-fold - Improvement in the Stroopcolor naming test, Trail making A&B tests. unchanged Increased 3-fold # Targeting insulin inhibition as a metabolic therapy in advanced cancer: A pilot safety and feasibility dietary trial in 10 patients Eugene J. Fine M.D., M.S. ^{a,*}, C.J. Segal-Isaacson Ed.D., R.D. ^b, Richard D. Feinman Ph.D. ^c, Silvia Herszkopf M.S., R.D., L.M.N.T. ^d, Maria C. Romano M.S., R.D., C.D.N. ^d, Norica Tomuta M.D. ^e, Amanda F. Bontempo M.S., R.D., C.D.N. ^d, Abdissa Negassa Ph.D. ^f, Joseph A. Sparano M.D. ^g **Table 1** Baseline patient demographics | Patient | Age (y)/Race | Sex | Cancer diagnosis | Year* | Prior chemotherapy
courses | Glucose (mg/dL) | Creatine (mg/dL) | Weight (kg) | BMI (kg/m ²) | |------------|----------------|-----|------------------|-----------|-------------------------------|-----------------|------------------|----------------|--------------------------| | 1 | 61/AA | F | breast | 4 | 5 | 107 | 1.3 | 77.6 | 29.3 | | 2 | 53/H | F | fallopian tube | 5 | 5 | 93 | 0.9 | 63.0 | 25.0 | | 3 | 73/C | F | breast | 14 | 0† | 114 | 0.8 | 62.8 | 28.0 | | 4 | 70/AA | F | colorectum | 5 | 4 | 87 | 1.2 | 73.0 | 28.5 | | 5 | 69/AA | M | lung | 5 | 5 | 90 | 1.0 | 77.1 | 27.5 | | 6 | 72/C | M | esophagus | 2 | 6 | 107 | 1.0 | 103.4 | 29.3 | | 7 | 52/As | F | colorectum | 5 | 4 | 104 | 0.5 | 46.3 | 20.9 | | 8 | 61/C | M | colorectum | 6 | 6 | 95 | 1.1 | 69.9 | 22.7 | | 9 | 64/AA | F | ovary | 5 | 10 | 100 | 1.7 | 98.0 | 34.9 | | 10 | 54/C | F | lung | 4 | 8 | 93 | 0.9 | 68.0 | 26.1 | | Mean ± SEM | 62.9 ± 2.5 | N/A | N/A | 5.5 ± 1.0 | 5.3 ± 0.8 | 99 ± 2.8 | 1.0 ± 0.1 | 73.0 ± 5.3 | 27.2 ± 1.2 | ^a Department of Radiology (Nuclear Medicine), Albert Einstein College of Medicine, Bronx, New York, USA #### Ketosis on VLC diet vs. baseline Stability Progression | Pt. | PET | [BHB _{VLC}]/Baseline | |-----|-----|--------------------------------| | 3* | SD | 2.7 ± 1.2 | | 2 | PR | 23.3 ± 14.2 | | 5 | SD | 13.1 ± 18.5 | | 7 | SD | 14.6 ± 11.8 | | 8 | SD | 8.2 ± 2.8 | | 10 | SD | 23.6 ± 8.2 | | | | | | 1 | PD | 2.1 ± 1.9 | | 4 | PD | 2.8 ± 1.2 | | 6 | PD | 4.2 ± 2.8 | | 9 | PD | 11.4 ± 4.5 | ^{*} Pt. 3 had biologically much more indolent disease than #### Ketosis vs. PET outcome Ketosis is 3-fold higher among stabilizers 18F-β-hydroxybutyrate the next metabolic PET agent? #### Conclusion - Treat Alzheimer's disease as a metabolic disorder; - Using ¹¹C-AcAc and ¹⁸F-FDG PET scans to select suitable cases for ketone therapy in AD; - Using ¹¹C-AcAc and ¹⁸F-FDG PET scans to select suitable cases for ketone therapy in oncology; - Possible application of ¹¹C-AcAc in other neurological disorders; - Develop ¹¹C-AcAc , ¹¹C- β -hydroxy butyrate and ¹⁸F- β -hydroxy butyrate as possible metabolic PET imaging agents in Taiwan.